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Table III. Relative Energies (Electronvolts) for XSiH3 — 
XSiH2-+ H + 0 

Scheme I. Strategies for Using RAMA To Synthesize Ketoses and 
Aldoses" 
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CH3 
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OH (tent) 
OH (plow) 
F 
SiH3 

PH2 

SH (tent) 
SH (plow) 
Cl 

6-31++G(d,p) 

SCF 

16.97 
17.02 
16.87 
16.88 
16.59 
16.19 
16.22 
16.13 
16.12 
16.02 

MP2 

16.85 
16.85 
16.71 
16.70 
16.48 
16.04 
16.14 
16.12 
16.10 
16.05 

MP4 

16.83 
16.82 
16.68 
16.68 
16.45 
16.04 
16.15 
16.11 
16.09 
16.03 

MC-311++G-
(3df,2pd) 

SCF 

17.06 
17.15 
17.05 
17.05 
16.74 
16.25 
16.31 
16.28 
16.26 
16.21 

MP2 

16.78 
16.84 
16.76 
16.75 
16.48 
15.90 
16.04 
16.06 
16.03 
16.03 

AH" 

16.50 
16.56 
16.47 
16.47 
16.21 
15.70 
15.75 
15.77 
15.74 
15.73 

0At the 6-31G(d) geometries. 'Corrected for zero-point vibrational 
energies, scaled by 0.89. 

and F increase the acidity. The effects of the substituents relative 
to each other are similar to those found here, except that the effect 
of NH2 and CH3 are reversed. 
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Rabbit muscle aldolase (RAMA) is a useful catalyst for the 
synthesis of sugars.5,6 The "normal" application of this enzyme 
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in synthesis is to catalyze the aldol condensation of dihydroxy-
acetone phosphate (DHAP) and an aldehyde with formation of 
a carbon-carbon bond having the D-threo configuration (Scheme 
I).5 

RAMA has three useful characteristics as a catalyst for aldol 
condensations: When RAMA is used, the hydroxyl groups present 
in the reactants need not be protected. It accepts a wide variety 
of aldehydes.6 Its reactions are stereospecific. It also has limi­
tations: It requires DHAP as one substrate, and it generates only 
vicinal diols having D-threo stereochemistry at C3-C4.6 It also 
does not produce aldoses: Its products necessarily have a ketone 
group at C2 rather than an aldehyde group at Cl. Conversion 
of a ketose to an aldose is not straightforward.7 

Here we describe a new strategy for using RAMA (the 
"inverted" strategy, Scheme I) that increases the usefulness of 
this enzyme as a catalyst in the synthesis of sugars. We also 
demonstrate the value of L-iditol dehydrogenase (IDH) as a 
catalyst for the diastereospecific reduction of the ketone in this 
class of carbohydrates to an alcohol.8,9 

RAMA-catalyzed aldol condensation between DHAP and a 
half-protected dialdehyde, OCHR'(CHO)P, generates a protected 
aldose having a ketone (that derived from DHAP) at C^1. De-
phosphorylation, reduction, or other transformation of the ketone 
and deprotection of the aldehyde provide the aldose. Both the 
structure of this aldose and the location of the vicinal diol formed 
in the aldol reaction can be controlled through the structure of 
R'. The ketone group derived from the DHAP offers control of 
the chemistry at the end of the sugar distal to the aldehyde. 
Scheme II illustrates this "inverted" approach to the synthesis of 
sugars using RAMA with syntheses of L-xylose (4) and 2-
deoxy-D-arabino-hexose (9). 

RAMA-catalyzed (50 units) condensation of diethoxyacet-
aldehyde (I)10 (1 mmol, added in five portions over 5 days) and 
D-fructose 1,6-diphosphate (1 mmol) in the presence of triose-
phosphate isomerase (EC 5.3.1.1, ca. 200 units), followed by 
treatment in situ with acid phosphatase (AP, 20 units), afforded 
2 in 60% overall yield." Conversion of ketone 2 (1 mmol) to 
alcohol 3 with L stereochemistry was accomplished in 69% yield, 
using IDH (from Candida utilis, 10 units),9 coupled with formate 
dehydrogenase (FDH, 10 units) and sodium formate (3 mmol) 
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(5) Toone, E. J.; Simon, E. S.; Bednarski, M. D.; Whitesides, G. M. 

Tetrahedron 1989, 45, 5365. 
(6) Bednarski, M. D.; Simon, E. S.; Bischofberger, N.; Fessner, W.-D.; 

Kim, M.-J.; Lees, W.; Saito, T.; Waldmann, H.; Whitesides, G. M. J. Am. 
Chem. Soc. 1989, 111, 627. 

(7) Durrwachter, J. R.; Sweers, A. M.; Nozaki, K.; Wong, C-H. Tetra­
hedron Lett. 1986, 27, 1261. 

(8) Christensen, U.; Tuchsen, E.; Andersen, B. Acta Chem. Scand. B 1975, 
29, 81. L-Iditol dehydrogenase is also called polyol dehydrogenase and sorbitol 
dehydrogenase. 

(9) Chakrovorty, M.; Veiga, L. A.; Bacila, M.; Horecker, B. L. J. Biol. 
Chem. 1962, 237, 1014. 

(10) Bestmann, H.; Ermann, P. Chem. Ber. 1983, 166, 3264. 
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Scheme II. Synthesis of L-Xylose (4) and 2-Deoxy-D-a«r6mo-hexose 
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"(a) RAMA (EC 4.1.2.13); (b) AP (EC 3.1.3.2); (c) IDH (EC 
1.1.1.14, from Candida utilis)fSADH/¥DH (EC 1.2.1.2)/formate; 
(d) aqueous HC1/THF; (e) NaHB(OAc)3/HOAc; (f) IDH (EC 
1.1.1.14 from sheep liver/NAD+/GluDH (EC 1.4.1.3)/KG/NH4

+. 

to recycle NADH (0.017 mmol).12 Hydrolysis of the acetal with 
aqueous HCl (0.5 M)/THF (1:1) yielded 4 (95%), which was 
indistinguishable by 13C and 1H NMR (500 MHz) spectroscopy 
from the commercially available enantiomer D-xylose. 

To generate the opposite (D) stereochemistry on reduction of 
the ketone required an additional step (Scheme II). Ketone 6 was 
obtained in 66% yield by RAMA-catalyzed (250 units) reaction 
of l,3-dioxane-2-acetaldehyde (5)13 (3.8 mmol) and DHAP14 (3.5 
mmol) followed by dephosphorylation with AP (200 units). 
Compound 6 (2 mmol) was reduced with NaHB(OAc)3 (5 
mmol)15 in acetic acid. This reduction yielded a mixture of the 
desired (5R) and undesired (5S) diastereomers in a 2:1 ratio 
(NMR analysis) and 75% yield. The 55 diastereomer was re­
moved by treating the mixture of diastereomers 7 (0.9 mmol) with 
IDH (13 units)8 and NAD+ (0.005 mmol),16 using an L-glutamic 
dehydrogenase (GIuDH, 48 units)/2-ketoglutarate (KG, 0.3 
mmol), ammonium sulfate (0.3 mmol) cofactor recycling system.12 

The product of oxidation, 6 (15%), could, in principle, have been 
recycled to increase the yield of 8 but was, instead, discarded. 
Compound 8 was isolated in 55% yield (from 7). Deprotection 
of the aldehyde 8 with aqueous 1.0 M HC1/THF (1:1) yielded 
2-deoxy-D-araWrto-hexose (9, 95%), which was indistinguishable 
from authentic material by 13C and 1H NMR (500 MHz) 
spectroscopy. 

These two procedures demonstrate that RAMA accepts the 
half-protected aldehydes 1 and 5 as substrates and illustrate the 
application of this observation in syntheses of aldoses. These 
syntheses also show the value of IDH, or of NaHB(OAc)3 in 
combination with IDH, in generating alcohols of either stereo­
chemistry from the ketones derived from DHAP. 

We are now addressing the most important remaining limitation 
of aldolase-catalyzed synthesis—the restriction of the D-threo 
stereochemistry for the vicinal diol—by exploring aldolases having 
stereochemical preferences different from RAMA.6 
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The search for neutral, low-dimensional conducting materials2 

has kindled interest in the preparation and study of heterocyclic 
thiazyl radicals;3,4 recent attention has been focused on 1,2,3,5-
dithiadiazolyls I.5 These planar seven-7r-electron radicals are 
known to associate in the solid state in one of two modes, i.e., 2 
(R = Ph)5e and 3 (R = CF3,

5d NMe2,
5a Me6). To date, however, 

there is no evidence of the desired packing mode, i.e., vertical stacks 
of uniformly spaced radicals.7 In order to test the effect on 
interdimer interactions of the replacement of sulfur by selenium, 
we have prepared and structurally characterized the hitherto 
unknown 1,2,3,5-diselenadiazolyl 4 (R = Ph). 

S S Se Se 

l(7)\ l(?)\ 
T^ 1 I^ 4 

I©>CH©I 
1,2,3,5-Dithiadiazolium salts are accessible by a variety of 

routes.3'5d'8 We have found, however, that the reaction of the 
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